BY BERNARD JOLIBOIS AND GERARD LAPLACE

UER Sciences Exactes et Naturelles, 33 rue Saint Leu, 80039 Amiens, France

AND FRANCIS ABRAHAM AND GUY NOWOGROCKI

Université des Sciences et Techniques de Lille, BP 36, 59655 Villeneuve d'Ascq CEDEX, France

(Received 6 March 1980; accepted 16 April 1980)

Abstract

The low-temperature form of $(NH_4)_3 In(SO_4)_3$ is monoclinic, $P2_1/c$, with a = 8.963 (7), b = 15.644 (15), c = 9.131 (6) Å, $\beta = 108.28$ (5)°, Z = 4. Final R = 0.015 for 1936 observed reflections. The In atoms have distorted octahedral coordination with an average In-O distance of 2.125 Å. InO₆ octahedra are linked together by SO₄ tetrahedra to form infinite chains along c. NH₄⁺ ions connect these chains. An extensive hydrogen-bond network is proposed. The arrangement of In(SO₄)₃ columns exhibits pseudotrigonal symmetry.

Introduction

Numerous compounds of general formula $M_3^{I} M'^{III} (XO_4)_3$ with X = S or Se; $M^{I} = K$, Cs, Rb, NH₄, Tl; $M'^{III} = Al$, Ga, In, Tl, Sc, V, Fe, Cr, rare earth, have been isolated and characterized. The most commonly adopted structure is of trigonal symmetry (Valkonen & Niinistö, 1978) but some compounds have a monoclinic cell (Kudin, Efremov, Pokrovsky, Trunov & Dertirev, 1977; Laplace & Jolibois, 1979). During the investigation of $M_2^{I}SO_4 - M_2^{III}(SO_4)_3$ systems we have synthesized one compound $(NH_4)_3In(SO_4)_3$ (Tudo, Tudo & Perret, 1974) which exhibits a low-temperature reversible transition between monoclinic and trigonal forms. The slight modification observed on the powder diffractogram suggests only a small distortion between the two structures. This paper deals with the structural determination of the low-temperature monoclinic form.

Experimental

Single crystals of $(NH_4)_3In(SO_4)_3$ were obtained as previously described (Laplace & Jolibois, 1979).

The crystals are prismatic with hexagonal crosssection limited by the planes ($\overline{1}03$), (100), (130) and

0567-7408/80/112517-03\$01.00

(130). A crystal with dimensions 0.190 mm between the lateral faces and 0.390 mm between hexagonal sections (103) was selected for intensity collection. A Philips PW 1100 automated diffractometer at the University of Lille I with graphite-monochromated Mo K_{α} radiation was used for the data collection. Half of reciprocal space was explored to $\theta = 25^{\circ}$. Of the 4561 reflections measured, 4036 were considered significant from the criterion $I > 3\sigma(I)$, where $\sigma(I)$ is the e.s.d. of the measured intensity. Three standard reflections were measured every two hours. The data were corrected for background, Lorentz and polarization effects. Absorption corrections were made (de Meulenaer & Tompa, 1965); the transmission factor ranged from 0.65 to 0.69 [μ (Mo $K\alpha$) = 2.5 mm⁻¹]. Averaging of equivalent reflections led to the 1978 independent planes used in the structure determination.

Structure determination and refinement

The structure was solved by the heavy-atom method. Two positions for In atoms were consistent with the Patterson map. For the two solutions, a Fourier map calculated with $(F_o - F_{In})$ revealed the positions of all the S atoms. The refinement of the In and S coordinates permitted the elimination of one of the two solutions since R was very different in the two cases: 0.246 and 0.319; furthermore, a $(F_o - F_{In+S})$ synthesis revealed O and N atoms only in the case corresponding to R =0.246. The coordinates and anisotropic temperature factors for all non-H atoms were refined. R dropped to 0.022. A difference synthesis at this stage revealed all the H atoms. Introduction of their coordinates with isotropic temperature factors led to R = 0.017; however, the value of B for H(8) was too large (13 Å²). 42 reflections with $|F_o - F_c| > 3\sigma \{\sigma = [\sum (|F_o| - |F_c|)^2/N]^{1/2}\}$ were then rejected: *B* of H(8) dropped to 6.6 Å²; the final R was 0.015 for the remaining reflections (0.017 if the 1978 initial reflections were included). The coordinates and thermal parameters are

© 1980 International Union of Crystallography

Table	1.	Frac	ctional	atomic	coordinat	es ($(\times 10^{5};$	for
$H \times 10$	0³)	and	isotrop	ic (H) or	[.] isotropic	equ	ivalent	(In,
		S,	O and	N) tempe	erature fac	tors		

	x	, y	Ζ	B (Å ²)
In	21519 (2)	25002 (1)	22474 (2)	0.9
S(1)	25436 (7)	9155 (4)	47552 (6)	1.1
S(2)	44729 (7)	34724 (4)	53964 (6)	1.1
S(3)	-4120 (7)	32909 (4)	39422 (6)	1.2
O(1)	17615 (23)	1057 (12)	47641 (22)	2.6
O(2)	40834 (21)	7958 (13)	46155 (21)	2.4
O(3)	15451 (19)	14349 (11)	34323 (19)	1.7
O(4)	27239 (24)	13703 (12)	62235 (20)	2.5
O(5)	38732 (32)	42679 (12)	46306 (22)	2.6
O(6)	61420 (22)	35057 (13)	61423 (23)	2.7
O(7)	37074 (27)	32968 (14)	65744 (23)	3.3
O(8)	41130 (19)	27590 (11)	42505 (19)	1.9
O(9)	-6172 (29)	41503 (13)	44100 (27)	3.7
O(10)	7426 (21)	33220 (11)	30978 (21)	2.1
O(11)	-18738 (23)	29385 (17)	29640 (23)	3.8
O(12)	1589 (21)	27205 (12)	53042 (19)	2.2
N(1)	87639 (30)	2490 (17)	21238 (30)	2.2
N(2)	60214 (34)	4200 (20)	78375 (32)	2.4
N(3)	69791 (30)	17078 (16)	47053 (29)	1.8
H(1)	935 (6)	39 (3)	162 (6)	5.0 (1.3)
H(2)	943 (7)	18 (4)	296 (7)	4.7 (1.4)
H(3)	790 (5)	67 (3)	182 (5)	2.5 (0.9)
H(4)	820 (7)	-25 (4)	182 (7)	6.2 (1.5)
H(5)	593 (5)	9 (3)	712 (5)	2.3 (1.0)
H(6)	569 (6)	22 (3)	852 (6)	3 · 1 (1 · 1)
H(7)	684 (5)	72 (3)	819 (5)	1.8 (0.8)
H(8)	531 (8)	73 (4)	771 (7)	6.6 (1.7)
H(9)	742 (4)	110(3)	481 (4)	1.8 (0.8)
H(10)	599 (6)	167 (3)	447 (6)	3.1 (1.2)
H(11)	738 (4)	196 (2)	572 (5)	1.5 (0.7)
H(12)	731 (4)	199 (2)	398 (4)	1.5 (0.8)

in Table 1.* Refinement was performed with SFLS-5 (Prewitt, 1966). The function minimized was $\sum (|F_o| - |F_c|)^2$. An extinction correction was applied of the form $F_{\text{corr}}^2 = F_c^2/(1 + SF_o^2)$, with a final S of 0.52(2) × 10⁻⁷. Scattering factors were from Cromer & Waber (1965). Anomalous-dispersion corrections were made (Cromer & Liberman, 1970).

Description of the structure and discussion

The most significant bond lengths and angles in the In, S and N coordination polyhedra are listed in Table 2. In atoms are surrounded by six O atoms of six different sulfate groups (Fig. 1), forming a slightly deformed octahedron. The six In–O distances are close and the mean value $(2 \cdot 125 \pm 0.025 \text{ Å})$ is consistent with previously reported values (Johansson, 1961; Tudo, Jolibois, Laplace, Nowogrocki & Abraham, 1979).

In the three crystallographically independent SO_4 tetrahedra, the S–O distances are distributed in two

groups: two long bonds (mean length 1.484 ± 0.014 Å) with O atoms linked to In, and two shorter bonds (mean length 1.442 ± 0.007 Å) with O not bonded to In (Fig. 1). Two InO₆ octahedra are linked together by three SO₄ tetrahedra to form infinite chains along c

Table 2. Principal distances (Å) and angles (°) in $(NH_4)_{3}In(SO_4)_{3}$

E.s.d.'s are in parentheses. The symmetry code (i) stands for x, $\frac{1}{2} - y, z - \frac{1}{2}$.

Indium octahed	iron			
In-O(3)	2.148(2)	In-O(8)	2.141	(2)
In-O(4)	2.135 (2)	$\ln - O(10)$	2.113	(2)
$In-O(7)^{i}$	2.101 (2)	$In-O(12)^{i}$	2.114	. (2)
Sulfate tetrahe	dra			
S(1)–O(1)	1.449 (2)	O(1)-S(1)-O	(2)	111.5 (3)
S(1) - O(2)	1.438 (2)	O(1)-S(1)-O	(3)	108.1 (2)
S(1) - O(3)	1.497 (2)	O(1) - S(1) - O	(4)	109.3 (2)
S(1) - O(4)	1.481(2)	O(2) - S(1) - O	(3)	110.3(2)
		O(2) - S(1) - 0	(4)	107.9 (3)
		O(3) - S(1) - O	(4)	109.7 (2)
S(2)-O(5)	1.446 (2)	O(5)-S(2)-O	(6)	111.8 (2)
S(2) - O(6)	1.437 (2)	O(5) - S(2) - O(5) -	(7)	109.0 (3)
S(2)-O(7)	1.472 (2)	O(5)-S(2)-O	(8)	109.8 (2)
S(2) - O(8)	1.494 (2)	O(6) - S(2) - O	(7)	108.4 (3)
- (-) - (-)		O(6) - S(2) - O	(8)	108.8 (2)
		O(7)–S(2)–C	(8)	108.9 (3)
S(3)-O(9)	1.440 (2)	O(9)-S(3)-C	0(10)	107.5 (3)
S(3) - O(10)	1.473 (2)	O(9) - S(3) - C	(11)	111.4 (3)
S(3) = O(11)	1.444(2)	O(9) - S(3) - C	(12)	110.8 (2)
S(3) = O(12)	1.485 (2)	$O(10) - \hat{S}(3) - \hat{S}(3)$	Ò(Í)	109.8 (3)
- (- / (- /		O(10) - S(3) -	O(12)	110.1 (3)
		O(11) - S(3) -	O(12)	107.2 (2)
Ammonium io	ons			
N(1) - H(1)	0.83 (6)	N(3)–H(9)	1.02	(4)
., .,				

0
85 (5
97 (4
92 (4

Fig. 1. Coordination polyhedra around the In and S atoms. The symmetry codes (i) and (ii) stand for $x, \frac{1}{2} - y, \frac{1}{2} + z$ and $x, \frac{1}{2} - y, z - \frac{1}{2}$ respectively.

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35342 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

(Fig. 2). Each sulfate shares two O atoms with In polyhedra. Such columns were found in triammonium scandium selenate, $(NH_4)_3Sc(SeO_4)_3$ (Valkonen & Niinistö, 1978), but the orientations of two consecutive octahedra along the column are different.

The inaccuracy of the H coordinates precludes an assessment of the regularity of the NH_4^+ tetrahedra. However, the mean N-H distance of 0.88 Å [0.87, 0.82 and 0.94 Å for N(1), N(2) and N(3) respectively] is acceptable.

The NH_4^+ ions link together the columns previously described. An extensive hydrogen-bond network can be proposed, the characteristics of which are summarized

Fig. 2. Linking of InO₆ octahedra and SO₄ tetrahedra to form the $[In(SO_4)_{3}^{-1}]_{\infty}$ column along c.

Table 3. Characteristics of hydrogen bonds

The notation $O(n)_{pqr}^{x}$ represents atom O(n) to which the symmetry x has been applied, followed by a translation of pa + qb + rc. Symmetry code: (i) x,y,z; (ii) \bar{x},\bar{y},\bar{z} ; (iii) $\bar{x}, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) $x, \frac{1}{2} - y, \frac{1}{2} + z$.

	N−O (Å) (e.s.d. 0·002 Å)	H–O (Å) (e.s.d. 0·06 Å)	N-H-O (°) (e.s.d. 3-4°)
$N(1)-H(1)-O(9)_{10\bar{1}}^{iv}$	2.862	2.154	143
$N(1)-H(1)-O(9)_{110}^{111}$	3.022 [O(9) ^{iv} ₁₀₁ −H	2·567 I(1)−O(9) ^{III}	116 77]
$N(1)-H(2)-O(1)_{100}^{l}$	3.003	2.221	160
$N(1)-H(3)-O(6)_{00\bar{1}}^{iv}$	2.966	1.977	178
$N(1)-H(4)-O(5)_{1\bar{1}0}^{11}$	2.852	2.052	143
$N(1)-H(4)-O(10)_{1\bar{1}0}^{11}$	3.063 $\left[O(5)_{110}^{\text{HI}}-H\right]$	2.413 H(4)-O(10) ⁱⁱⁱ ₁₁₀	127 87]
$N(2)-H(5)-O(2)_{101}^{li}$	2.917	2.107	174
$N(2)-H(6)-O(5)_{1\bar{1}1}^{11}$	2.902	2.187	146
$N(2)-H(6)-O(5)_{000}^{lv}$	2.933 [O(5)¦ii I,ī₁−H	2·313 I(6)-O(5) ^{iv} ₀₀₀	131 83]
$N(2)-H(7)-O(9)_{100}^{iv}$	2.979	2.212	151
$N(2)-H(7)-O(11)_{100}^{iv}$	3.167 $\left[O(9)_{100}^{iv}-H\right]$	2·431 H(7)-O(11) ^{iv} ₁₀₀	146 62]
$N(3)-H(9)-O(1)_{101}^{II}$	3.036	2.016	174
$N(3)-H(10)-O(2)_{000}^{i}$	2.940	2.225	142
N(3)-H(10)-O(8) ⁱ ₀₀₀	2·968 [O(2) ⁱ ₀₀₀ -H	2·359 H(10)O(8) ^I ₀₀₀₀	129 85]
$N(3)-H(11)-O(11)_{100}^{iv}$	2.880	1.952	161
$N(3)-H(12)-O(11)_{100}^{i}$	2.884	2.001	160

Fig. 3. Packing of the $|In(SO_4)_3^{3-}|_{\infty}$ columns viewed along c showing the pseudo-trigonal symmetry.

in Table 3. Some of the H atoms seem to participate in bifurcated bonds. However, the presence of this hydrogen-bond network does not exclude the existence of electrostatic interactions between the large NH_4^+ cations and the O atoms not involved in the column formation.

The arrangement of the $In(SO_4)_3$ chains is shown in Fig. 3. For clarity, only N positions have been represented for NH⁺₄ ions.

It is obvious in Fig. 3 that an $In(SO_4)_3$ column exhibits pseudo-trigonal symmetry and that the neighboring columns form a pseudo-regular-hexagonal arrangement; this fact is probably related to the low-temperature transition from monoclinic to trigonal symmetry. The structure of the high-temperature form is presently under investigation.

References

- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- JOHANSSON, G. (1961). Acta Chem. Scand. 15, 1437.
- KUDIN, O. V., EFREMOV, V. A., POKROVSKY, A. N., TRUNOV, P. A. & DERTIREV, V. K. (1977). Zh. Neorg. Khim. 22, 95–97.
- LAPLACE, G. & JOLIBOIS, B. (1979). J. Appl. Cryst. 12, 615.
- MEULENAER, J. DE & TOMPA, H. (1965). Acta Cryst. 19, 1014–1018.
- PREWITT, C. T. (1966). SFLS-5. A modification of ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- TUDO, J., JOLIBOIS, B., LAPLACE, G., NOWOGROCKI, G. & ABRAHAM, F. (1979). Acta Cryst. B35, 1580–1583.
- TUDO, J., TUDO, M. & PERRET, R. (1974). C. R. Acad. Sci. Sér. C, 278, 117-119.
- VALKONEN, J. & NIINISTÖ, L. (1978). Acta Cryst. B34, 266–268.